C. elegans meiotic nuclei stained to visualize DNA (blue), PCH-2 (green) and a marker for meiotic entry, phosphorylated SUN-1 (red)

C. elegans meiotic nuclei stained to visualize DNA (blue), PCH-2 (green) and a marker for meiotic entry, phosphorylated SUN-1 (red)

Preprints:

Patel, B., M. Grobler, A. Herrera, E. Logari, V. Ortiz and N. Bhalla. 2024. The conserved ATPase PCH-2 controls the number and distribution of crossovers by antagonizing their formation in C. elegans. bioRxiv.

Peer Reviewed Publications:

Patel, B., M. Grobler and N. Bhalla. 2023. Chromosomal fusions, but not chromosomal inversions, activate a PCH-2 dependent checkpoint that promotes crossover formation in C. elegans. [Pubmed]

Russo, A.E., S. Giacopazzi, A. Deshong, V. Ortiz, M. Menon, K. Ego, K. Corbett and N. Bhalla. 2023. The conserved AAA-ATPase PCH-2 distributes its regulation of meiotic prophase events through different meiotic HORMADs. PloS Genet. 19(4): e1010708. [Pubmed]

Devigne, A. and N. Bhalla. Mad1’s ability to interact with Mad2 is essential to regulate and monitor meiotic synapsis in C. elegans. PLoS Genet. 17(11):e1009598. [Pubmed]

Russo A.E., C.R. Nelson, N. Bhalla. 2021. Mutating two putative phosphorylation sites on ZHP-3 does not affect its localization or function during meiotic chromosome segregation. MicroPubl Biol. 10.17912/micropub.biology.000354. [Pubmed]

Defachelles, L., A.E. Russo, C.R. Nelson and N. Bhalla. 2020. The conserved AAA-ATPase PCH-2/TRIP13 regulates spindle checkpoint strength. Mol Biol Cell. 31(20): 2219-2233. [Pubmed]

Giacopazzi, S., D. Vong, A. Devigne, and N. Bhalla. 2020. PCH-2 collaborates with CMT-1 to proofread meiotic interhomolog interactions. PLoS Genet. 16(7): e1008904.. [Pubmed

Bohr, T., C.R. Nelson, S. Giacopazzi, P. Lamelza and N. Bhalla. 2018. Shugoshin is essential for meiotic prophase checkpoints in C. elegans. Curr Biol. 28(20): 3199-3211. [Pubmed]

Bohr, T., G. Ashley, E. Eggleston, K. Firestone and N. Bhalla. 2016. Synaptonemal complex components are required for meiotic checkpoint function in Caenorhabditis elegans. Genetics. 204(3): 987-997. [Pubmed]

Nelson, C.R., T. Hwang, P.H. Chen and N. Bhalla. 2015. TRIP13(PCH-2) promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J Cell Biol. 211(3): 503-516. [Pubmed]

Bohr, T., C.R. Nelson and N. Bhalla. 2015. Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans. J Cell Biol. 211(2): 233-242. [Pubmed]

Ye, A.L., J.M. Ragle, B. Conradt and N. Bhalla. 2014. Differential regulation of germline apoptosis in response to meiotic checkpoint activation. Genetics. 198(3): 995-1000. [Pubmed]

Deshong, A., A.L. Ye, P. Lamelza, and N. Bhalla. 2014. A quality control mechanism coordinates events during meiotic prophase in C. elegans. PLoS Genet. 10(4): e1004291. [Pubmed]

Lamelza, P. and N. Bhalla. 2012. Histone methyltransferases MES-4 and MET-1 promote meiotic checkpoint activation in Caenorabditis elegans.  PLoS Genet. 8(11): e1003089. [Pubmed]

Harper, N.C., R. Rillo, S. Jover-Gil, Z.J. Assaf, N. Bhalla, and A.F. Dernburg.  2011. Pairing Centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans.  Dev Cell. 21(5): 934-47. [Pubmed]

Bhalla, N., D.J. Wynne, V. Jantsch and A.F. Dernburg. 2008. ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans. PLoS Genet. 4(10): e1000235. [Pubmed]

Bhalla, N. and A.F. Dernburg. 2005. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorabditis elegans. Science. 310(5754): 1683-1686. [Pubmed]



Additional Publications (invited commentaries and reviews):

Strome S., N. Bhalla, R. Kamakaka, U. Sharma, and W. Sullivan. 2024. Clarifying Mendelian vs non-Mendelian inheritance. Genetics. 2024 Jul 8;227(3):iyae078. doi: 10.1093/genetics/iyae078. [Pubmed]

Bhalla, N. 2023. PCH-2 and meiotic HORMADs: a module for evolutionary innovation in meiosis? (Review). Curr Top in Dev Biol. 151:317-344. [Pubmed]

Bhalla N. 2022. "If you got a problem, I got a problem too": working toward making academic science more equitable. MBC. 33(14):ae6. [Pubmed]

Bhalla, N. Meiosis: Is Spermatogenesis Stress an Opportunity for Evolutionary Innovation? (Commentary) Curr Biol. 30(24): R1471-R1473. [Pubmed]

Singh, N. and N. Bhalla. 2020. Moonlighting Proteins. Annu Rev Genet. 54: 265-285. [Pubmed]

Bhalla, N. 2019. Strategies to improve equity in faculty hiring. Mol Biol Cell. 30(22): 2744-2749. [Pubmed]

Calisi, R.M. and a Working Group of Mothers in Science. 2018. Opinion: How to tackle the childcare-conference conundrum. Proc Natl Acad Sci U S A. 115(12):2845-2849. [Pubmed]

Berg J.M., Bhalla N., Bourne P.E., Chalfie M., Drubin D.G., Fraser J.S., Greider C.W., Hendricks M., Jones C., Kiley R., King S., Kirschner M.W., Krumholz H.M., Lehmann R., Leptin M., Pulverer B., Rosenzweig B., Spiro J.E., Stebbins M., Strasser C., Swaminathan S., Turner P., Vale R.D., VijayRaghavan K., and Wolberger C. 2016. Preprints for the life sciences. Science. 352(6288): 899-901. [Pubmed]

Bhalla, N. 2016. Has the time come for preprints in biology? Mol Biol Cell. 27(8): 1185-7. [Pubmed]

Ye, A.L. and N. Bhalla.  2011. Reproductive Aging: Insights from Model Systems (Review). Biochem Soc Trans39(6): 1770-1774. [Pubmed]

Paschal, C.R. and N. Bhalla. 2011. The cohesin complex: a platform for DNA damage checkpoint activation and repair? (Commentary) Curr Biol. 21(17): R649-50. [Pubmed]

Bhalla, N. 2010. Meiosis: Repair or removal? (Commentary) Curr Biol. 20(23): R1014-6. [Pubmed]

Bhalla, N. and A.F. Dernburg. 2008. Prelude to a Division (Review).  Annu Rev Cell Dev Biol.  24: 397-424. [Pubmed]